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Volcanic impact on climate
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Temperature anomaly (K)

Global radiation and temperature response
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Size matters!
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Size matters!
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Little ice age triggered by volcanism?

Last millennium simulations with/without volcanic forcing (Miller et al. 2012, GRL)
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Persistent volcanic signatures in the world oceans
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Spin-down of the global hydrologic cycle

Global and hemispheric precipitation from CMIP5 models
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Monsoon response to hemispherically asymmetric forcing

East Asian summer monsoon
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Positive NAO atmospheric circulation response
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Future climate projections

Changes in climate probability distribution
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Changes in the frequency of climate extremes aren't

just about the average. (Andy Rhines)

http://www.stochtastic.com/climate-variability-and-extremes.html
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Future climate projections

Changes in climate probability distribution
Projection uncertainty

Changing Mean
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Future climate projections

IPCC ARS on near-term climate predictions (Kirtman et al. 2013):

Volcanic eruptions are a potential source of uncertainty in our predictions.

Eruptions cannot be predicted in advance, but they will occur, causing
shortterm climatic impacts on both local and global scales.

In principle, this potential uncertainty can be accounted for by including
random eruptions, or eruptions based on some scenario in our near-term

ensemble climate predictions.

This area of research needs further exploration.
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Bjerknes Fast Track Initiative

Project Title Assessing the role of volcanoes in future climate prediction (VOLCANOES4FUTURE)
Host Institute Uni Climate

Project Leader Ingo Bethke

Key Personnel Stephen Outten, Peter Thorne, Odd Helge Ottera

Duration January to December 2015

Motivation and objective

Volcanic activity and solar variability constitute natural climate forcings that have been found to play important
roles in past climate evolution. As these forcings are difficult to predict, they have been omitted or at best
crudely represented in state-of-the-art future climate projections. With the preparation of CMIP6 being
underway, it is timely to assess the potential impact from their poor representation and to explore model
strategies to better account for their effects in future climate projections. This project will assess the effect of
including volcances in future climate predictions through a large ensemble of 215t Century climate change
simulations that use synthetic (proxy-based) volcanic forcing. It will serve as a preparatory study for the CMIP6
component VoIMIP, which will conduct a general assessment of the climatic response to volcanic forcing.

Activities

In the first part, we will evaluate existing records (proxy and instrumental) of volcanic activity to provide a
statistical description of past volcanic forcing activity - including eruption size distributions, return periods and
other guantities of interest. By assuming invariance in the statistical distribution of volcanic occurrences, we
will design a statistical model for generating plausible future forcing as synthetic time series.

In the second part, we will apply these synthetic forcing times series in a large (minimum 30 member) ensemble
of 21t Century climate change simulations performed with NorESM1-M. Apart from the volcanic forcing, the
simulations will follow the CMIPS protocol. In addition, we will perform a reference ensemble with no volcanic
forcing.

Our output analyses will focus on global and hemispheric surface temperatures. Specifically, we will address the
following issues: Does the inclusion of volcanoes significantly inflate the ensemble spread, i.e. the prediction
uncertainty? If yes, what are the implications for climate change detection? Is the lower distribution tail
changed and if yes, how would this affect decadal timescale variability and the chances for future “warming
pauses/hiatuses”? Is the ensemble mean changed? All of these questions have obvious implications for
adaptation decision making and emerging climate services. We need to provide advice that takes into account
the likelihood of large volcanic eruptions occurring in the 21% Century and what impacts that may have.
Inclusion of plausible natural forcings is hence arguably important in making informed adaptation decisions.

Outcomes
1. Methodology for generating synthetic volcanic forcing with realistic statistical properties
2. 21=Century simulation ensembles (one with and one without volcanic forcing) hosted and available for
use upon publication by the science community
3. Report/publication on possible role of volcanoes in future climate prediction, including
recommendations for treatment of volcanic forcing in CMIP6 future scenarios
4. (Stretch Goal) Extension of study to future solar variability

The project will strongly benefit from expertise gained in ensemble modelling and implementation of forcings
during the now finalized EXPLAIN SKD FTI project. We are therefore confident that our goals are feasible.

Budget

The project aims for a budget of 200kNok, to be used by Stephen Outten to fund the analysi @nic
records and design of synthetic forcings. Contributions from Ingo Bethke, Peter Thorne (r m@ 0dd
Helge Otterd will be in-kind. @O

Obijective

Demonstrate that it's possible to account
for future volcanic forcing uncertainty in
probabilistic climate assessments
(proof-of-concept).

|dentify socio-economically relevant
aspects of climate change projections for
which the inclusion of volcanic effects
makes a significant difference.

Approach

Perform a large ensemble of 21st Century
simulations that sample from a proxy-
constrained probability space of future
volcanic forcing.



How to include volcanoes in climate projections?
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Construction of proxy-based volcanic forcing futures

Step 1 — establish catalogue of historical eruptions

- 283 historical eruptions events over last 2,500 years with information

on magnitude (maximum stratospheric volcanic aerosol load) and
location (tropical vs NH/SH extratropical)
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Construction of proxy-based volcanic forcing futures

Step 2 — create 215t Century eruption chronologies by re-sampling

for each month, test if one or more of the 283 historical eruption events
are triggered — use pseudo-random numbers and assume probability of

1/(2500x12) for each event (i.e. 2,500-year return period) 6&
5

repeat for a total of 60 forcing futures
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Construction of proxy-based volcanic forcing futures

Step 2 — create 215t Century eruption chronologies by re-sampling

- for each month, test if one or more of the 283 historical eruption events
are triggered — use pseudo-random numbers and assume probability of

1/(2500x12) for each event (i.e. 2,500-year return period) 6&
&

 repeat for a total of 60 forcing futures

Stengths

simple algorithm with few subjective choices
statistitics converge against proxy-distribution
forcing futures are uncorrelated

future eruptions have historical reference

Alternatives

Cons

* representation of very large eruptions
not robust because they are very rare

« small eruptions not captured in ice
cores

» volcanic forcing generator based on extreme value theory (Ammann & Naveau 2010, JGR)
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O IOUS | Results  Summary
Construction of proxy-based volcanic forcing futures

Step 1 — establish catalogue of historical eruptions

« 283 historical eruptions events over last 2,500 years with information
on magnitude (maximum stratospheric volcanic aerosol load) and
location (tropical vs NH/SH extratropical)

Step 2 — create 215t Century eruption chronologies by re-sampling

» for each month, test if one or more of the 283 historical eruption events
are triggered — use pseudo-random numbers and assume probability of
1/(2500x12) for each event (i.e. 2,500-year return period)

» repeat for a total of 60 forcing futures %

60 o
0.7
17}

Step 3 — convert cronologies into model forcing

» use fixed shape functions that describe
spatiotemperal dispersal of volcanic aerosols
(Ammann et al. 2003, GRL)
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Volcanic aerosol mass (Tg)
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Proxy-based volcanic forcings
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215t Century experiments

VOLC

* 60 member ensemble using
plausible volcanic futures

+ RCP4.5 GHG scenario
forcing

NO-VOLC

« as VOLC but with volcanic
forcing switched off

VOLC-CONST

« 20 member ensemble with
volcanic forcing set constant
using 1850-2000 average
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Does it make a difference?”?
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Global-mean annual surface air temperature
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Global-mean annual surface air temperature
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Global-mean annual surface air temperature
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Global-mean annual surface air temperature
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Decadal temperature means and trends

Decadal anomaly (K)

Decadal anomaly (K)

g
o

2.5

2.0

1.5

1.0

decadal mean

decadal mean

std =0.04 K
std=0.11 K

anthropogenic warming removed

0123 456 7 8 91011

Probability density (K™')

Decadal trend (K decade'1)

a9” N~

oS o

rLQ

decadal trend

@ 1019 ‘19%9 ng%

std = 0.12 K/10-yr
std = 0.24 K/10-yr

5 10 15 20 25
Probability density (% K~ year)

30

28



R CIOOS . Results  Summary

Global warming pause probability

All years
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50% increase in hiatus decades

relative importance of volcanoes
increases for longer averaging periods
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Global warming pause probability

All years
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Large-scale climate indicators
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Does it matter locally?

Time of Emergence of global warming (VOLC — NO-VOLC)
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local climate change is expected to emerge a few
years later if volcanic effects are taken into account
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G UOGSI Results  Summary
Summary

- demonstrated that volcanic forcing uncertainty can be included in
future climate assessments (at high computational cost)

- performed a large ensemble of 21st Century climate simulations
that sample the probability space of future volcanic forcing

» compared results to conventional projections
with zero or constant volcanic forcing

+ found volcanic impacts on important aspects of 21st Century climate projections
* general increase in projection uncertainty (to-be-quantified)
« distribution widening for shortterm climate means and trends

* 50% increase in global warming hiatus decades

« potential implications for climate adaptation decisions and risk assessments
that focus on the spread and tails of distributions (to-be-identified)
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S INOGS S Results  Summary
Outlook

+ quantify volcanic contribution to total projection uncertainty and identify

information relevant for the upcoming IPCC report

- refine simulation strategy (e.g., combine probabilistic and scenario approaches)

and make it more suitable for coordinated multi-model efforts such as VolMIP

* address socioeconomic relevance through collaboration with regional climate

impact assessments

« follow up study for solar forcing Krakatoa 2007
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